

WELCOME TO THE “TRAP ARENA”

Shining the
Light on
Energy Savings

<http://901Servicesllc.com>

Presented by Jerry Hardin
Camron Hardin

Steam is _____

- A) Perfect**
- B) Imperfect**

QUALITIES OF STEAM

Gary Gleason's favorite phrase is "STEAM IS PERFECT"

Steam Distribution Systems

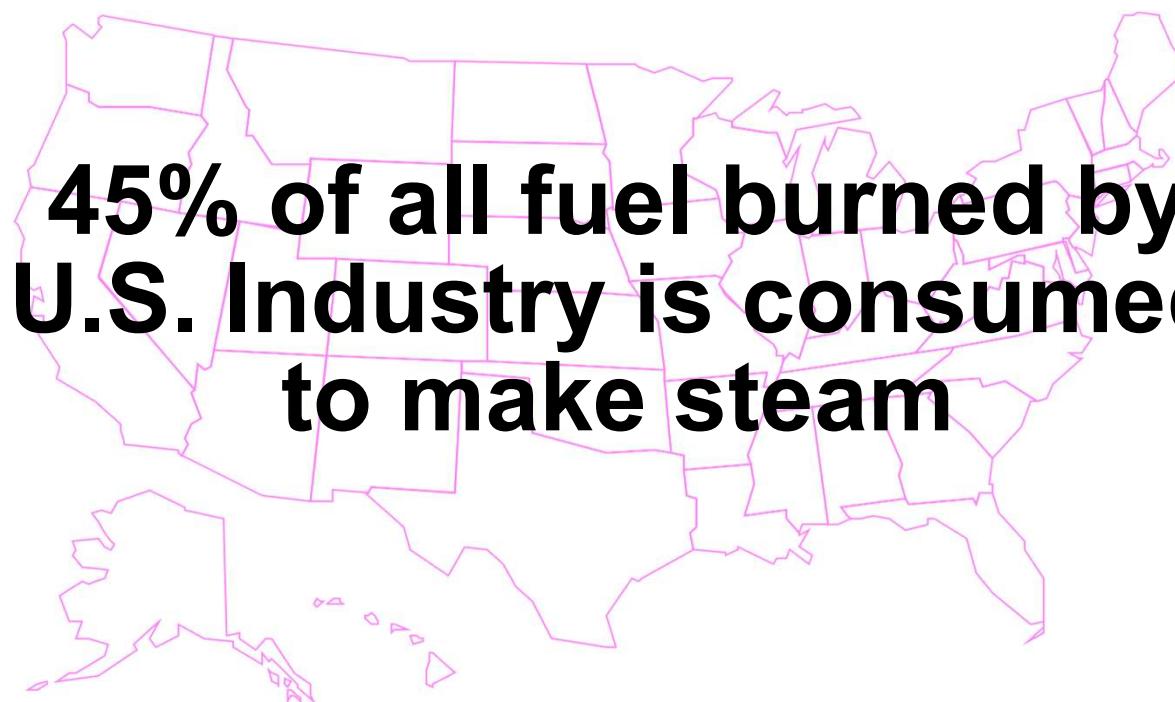
Are

- A) Perfect
- B) Imperfect

Importance of Steam

- How Important is STEAM????
- Why do we want to know about STEAM????

Steam

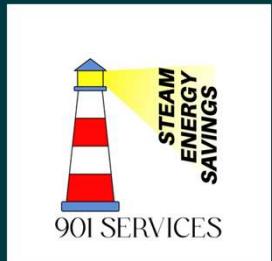

Part of the energy and environmental picture...

US = 24% of World Energy Consumption

Steam Energy

**45% of all fuel burned by
U.S. Industry is consumed
to make steam**

WHY IS STEAM ENERGY “PREFERRED”


- High usable heat content
- Gives up its heat at constant temperature
- Produced from water - plentiful and cheap
- Clean, odorless, tasteless
- Heat can be used over and over - Flash
- Easily distributed and controlled
- Constant characteristics -
Pressure/Temperature/volume relationships

Steam Is Dangerous !!!

- Many Industrial Accidents...
 - 1st, 2nd, 3rd Degree Burns, and Death
-
- Always Take Precautions
 - Turn Valves On/Off SLOWLY!!!
 - If Steam Is New To You Or Is Not Understood, SEEK HELP!

Water Hammer

- High velocity steam will force condensate to travel with it if steam lines are not properly pitched and drip legs not installed.
- High pressure condensate introduced into a flooded return will “implode” the flash steam.

Steam Leaks Are Dangerous

Examine Boiler Headers & Steam Manifolds

WHAT IS WRONG???

Steam Proper Plumbing Steam Standard Practices

Steam Basic Practices

- Pitch steam and condensate lines 1/2" per 10 ft with flow
- Keep steam velocities less than 10,000 ft per minute
- 1 PSIG equals 2.31 ft
- Always place drip traps at elevation changes, before restrictions in piping, equipment & every 100-200 ft

901 SERVICES

Sizing Drip Traps

- Most of the time a 1/2" or 3/4" inch steam trap is sufficient for a drip trap application.

Table 17-1. Condensation in Insulated Pipes Carrying Saturated in Quiet Air at 70°F (Insulation Assumed to be 75% Efficient)

Pressure, psig		15	30	60	125	180	250	450	
Pipe Size (in)	sq ft per Lineal ft	Pounds of Condensate Per Hour Per Lin							
1	.344	.05	.06	.07	.10	.12	.14	.186	
1 1/4	.434	.06	.07	.09	.12	.14	.17	.231	
1 1/2	.497	.07	.08	.10	.14	.16	.19	.261	
2	.622	.08	.10	.13	.17	.20	.23	.320	
2 1/2	.753	.10	.12	.15	.20	.24	.28	.384	
3	.916	.12	.14	.18	.24	.28	.33	.460	
3 1/2	1.047	.13	.16	.20	.27	.32	.38	.520	
4	1.178	.15	.18	.22	.30	.36	.43	.578	
5	1.456	.18	.22	.27	.37	.44	.51	.698	
6	1.735	.20	.25	.32	.44	.51	.59	.809	
8	2.260	.27	.32	.41	.55	.66	.76	1.051	1
10	2.810	.32	.39	.51	.68	.80	.94	1.301	1
12	3.340	.38	.46	.58	.80	.92	1.11	1.539	1
14	3.670	.42	.51	.65	.87	1.03	1.21	1.688	1
16	4.200	.47	.57	.74	.99	1.19	1.38	1.927	2
18	4.710	.53	.64	.85	1.11	1.31	1.53	2.151	2
20	5.250	.58	.71	.91	1.23	1.45	1.70	2.387	2
24	6.280	.68	.84	1.09	1.45	1.71	2.03	2.833	3

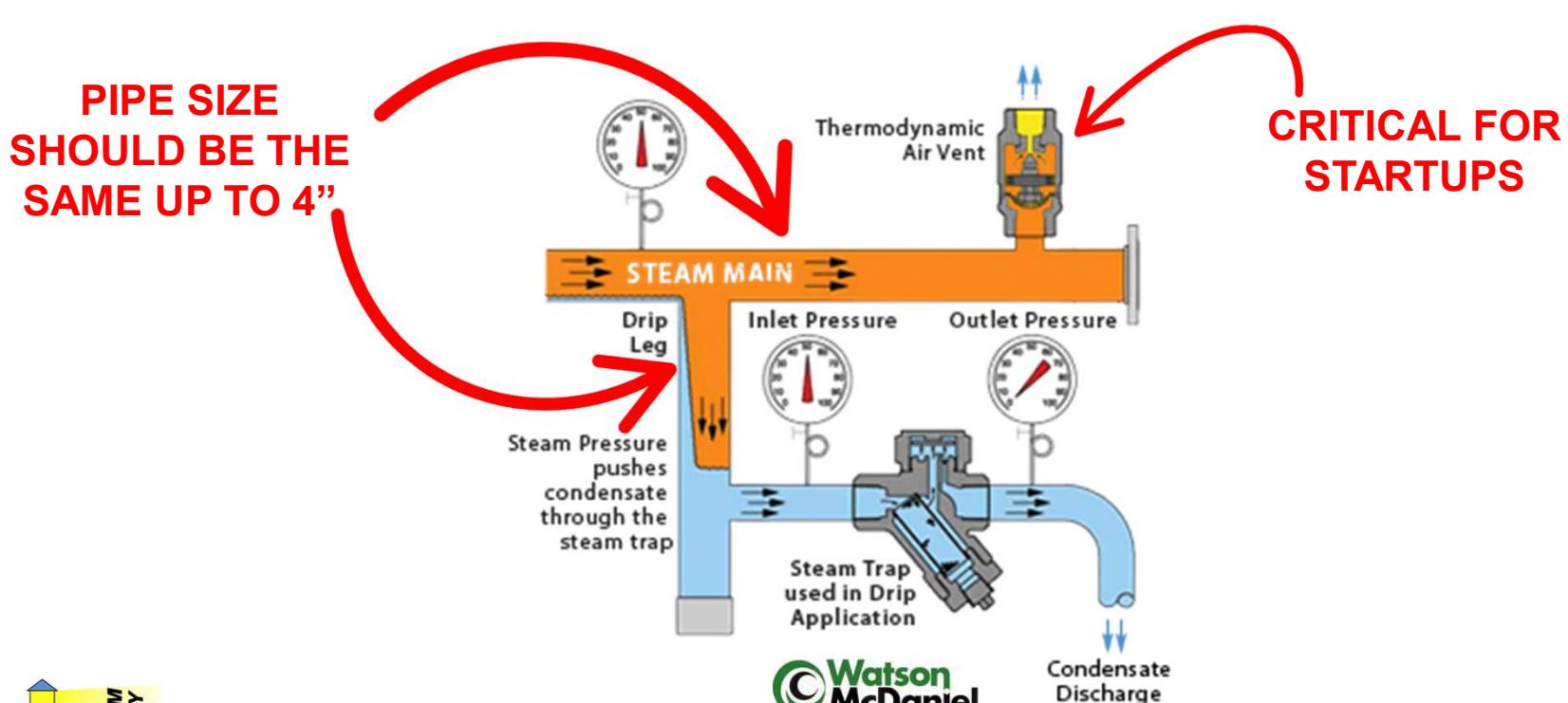
Drip Leg Sizing

Table 18-1. Recommended Steam Main and Branch Line Drip Leg Sizing

M Steam Main Size (in)	D Drip Leg Diameter (in)	H	
		Drip Leg Length Min. (in) Supervised Warm-Up	Automatic Warm-Up
1/2	1/2	10	28
3/4	3/4	10	28
1	1	10	28
2	2	10	28
3	3	10	28
4	4	10	28
6	4	10	28
8	4	12	28
10	6	15	28
12	6	18	28
14	8	21	28
16	8	24	28
18	10	27	28
20	10	30	30
24	12	36	36

- Size drip leg diameters large enough to allow condensate to “fall out” of the steam piping.
- Size drip leg volume large enough to store start up loads.

Proper Piping, Trapping & Venting

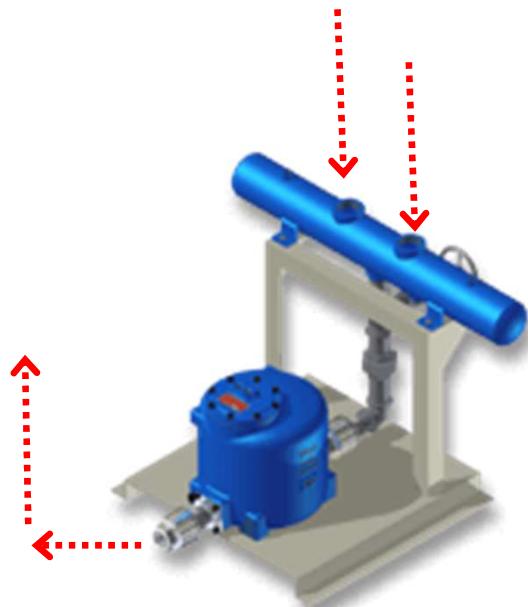


- Ensures good heat transfer
- Prevents water hammer & corrosion
- Avoids condensate backup into coil
- Prevents Freezing

The TRAP AREA

STEAM PROPER PLUMBING

HEAT EXCHANGER


MODULATED STEAM - LIFTING CONDENSATE

Temporary SOLUTION

FROM TRAP TO INLET OF RECEIVING TANK

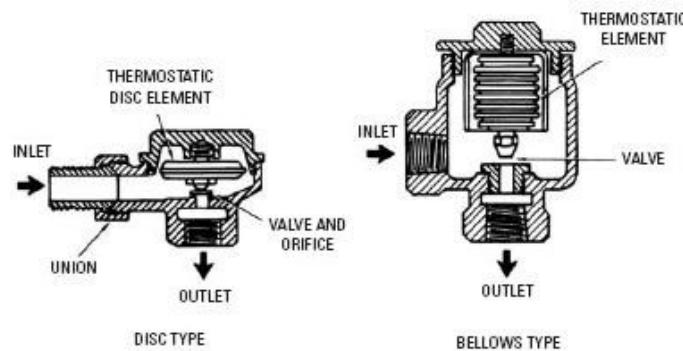
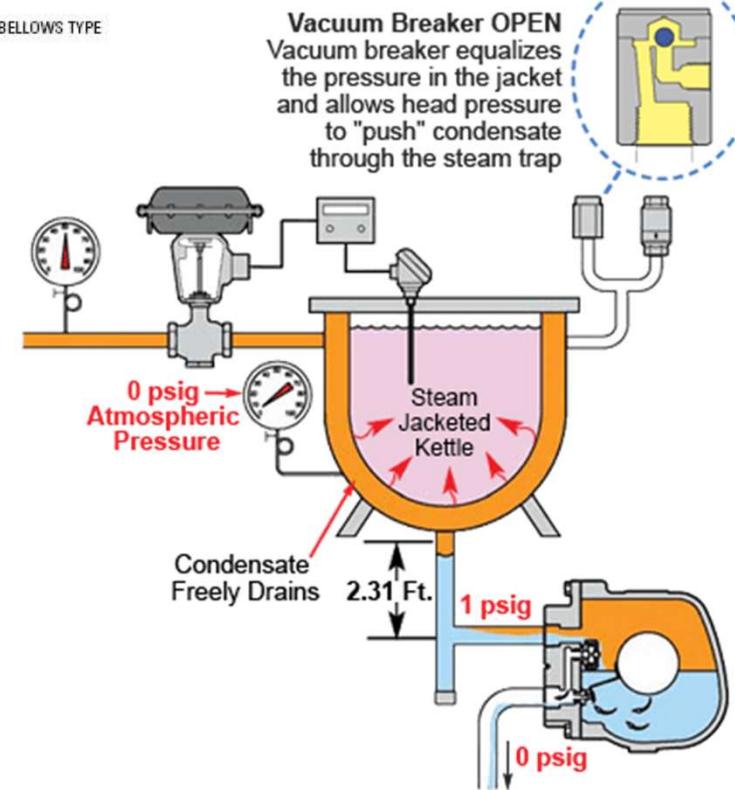
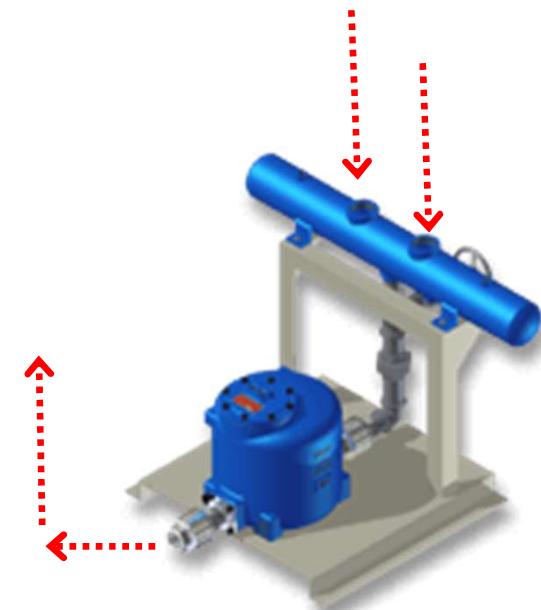




Figure 10-20 Thermostatic trap.

FROM TRAP TO INLET OF RECEIVING TANK

OUTLET FROM THE PUMP TRAP TO THE RETURN LINE

**SENSING
LINE**

**FLOODED
REGULATOR**

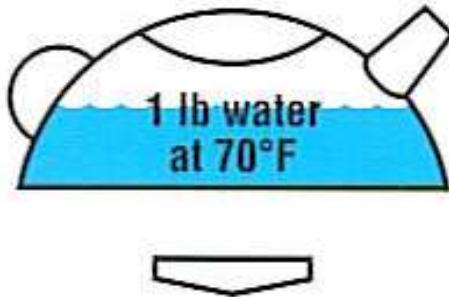
**OUTLET PIPE
SAME SIZE**

57

HOW IS STEAM MEASURED?

BRITISH THERMAL UNIT - BTU

- The amount of heat required to raise one pound of water one degree.

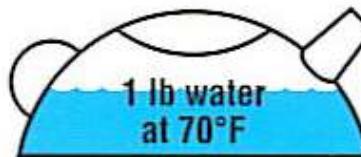


Steam Basics

- 1 Lb of water at 70 F

Steam Basics

+ 142 Btu =



- 1 Lb of water at 70 F
- Add 142 BTU's
- Knowing that water boilers at 212 F under atmospheric pressure - do we have water, steam, or a mixture???

Steam Basics

+ 142 Btu =

+ 970 Btu =

A diagram showing a grey dome representing 1 lb of steam at 212°F.

- We need to add an additional 970 BTU's of heat once the water is at 212 F in order to get 1 lb of steam under atmospheric conditions.

Quick Sample Problem

- Shell & Tube ... Holds 25 Gallons of Water
- Temperature Increases from 60°F to 110°F
- What is the BTU demand????

Ball Park Calculation

- 25 Gallons x 8 lbs/gallon = 200 lbs H2O....
- Raising Temp from 60 to 110 = 50°F Rise
- BTU demand is: $200 \times 50 = 1,000$ BTUs

Add Movement

- Pump is Sized for 50 Gallons/Minute
- Translates to $50 \times 60 = 300$ Gallons/Hour
- $300 \text{ gallons/hr} \times 8 \text{ lbs/gallon} = 2400 \text{ lbs/hour}$
- Temperature Rise is 50°F ...
- $\text{BTU} = 2400 \times 50 = 120,000 \text{ BTUs/HOUR}$

What is Trap Size Criteria?

- We know there is::
- ~1,000 BTUs in ONE POUND OF STEAM
- 120,000 BTUs => 120 Pounds of Steam
- 120 lbs of Steam => 120 lbs Condensate

STEAM

How big is one (1) pound of STEAM?

- 26.8 cu. ft.
- 16 Gallons of Tea
- 186 Cans of Soda
- 7.75 Cases of Water

	Col. 1 Gauge Pressure	Col. 2 Absolute Pressure (psia)	Col. 3 Steam Temp. (°F)	Col. 4 Heat of Sat. Liquid (Btu/lb)	Col. 5 Latent Heat (Btu/lb)	Col. 6 Total Heat of Steam (Btu/lb)	Col. 7 Specific Volume of Sat. Liquid (cu ft/lb)	Col. 8 Specific Volume of Sat. Steam (cu ft/lb)
Inches of Vacuum	29.743	0.08854	32.00	0.00	1075.8	1075.8	0.096022	3306.00
	29.515	0.2	53.14	21.21	1063.8	1085.0	0.016027	1526.00
	27.886	1.0	101.74	69.70	1036.3	1106.0	0.016136	333.60
	19.742	5.0	162.24	130.13	1001.0	1131.	0.016407	73.52
	9.562	10.0	193.21	161.17	982.1	1143.3	0.016590	38.42
	7.536	11.0	197.75	165.73	979.3	1145.0	0.016620	35.14
	5.490	12.0	201.96	169.96	976.6	1146.6	0.016647	32.40
	3.454	13.0	205.88	173.91	974.2	1148.1	0.016674	30.06
	1.418	14.0	209.56	177.61	971.9	1149.5	0.016699	28.04
	0.0	14.696	212.00	180.07	970.3	1150.4	0.016715	26.80
Inches of Water	1.3	16.0	216.32	184.42	967.6	1152.0	0.016746	24.75
	2.3	17.0	219.44	187.56	965.5	1153.1	0.016768	23.39
	5.3	20.0	227.96	196.16	960.1	1156.3	0.016830	20.09
	10.3	25.0	240.07	208.42	952.1	1160.6	0.016922	16.30
	15.3	30.0	250.33	218.82	945.3	1164.1	0.017004	13.75
	20.3	35.0	259.28	227.91	939.2	1167.1	0.017078	11.90
	25.3	40.0	267.25	236.03	933.7	1169.7	0.017146	10.50
	30.3	45.0	274.44	243.36	928.6	1172.0	0.017209	9.40
	40.3	55.0	287.07	256.30	919.6	1175.9	0.017325	7.79
	50.3	65.0	297.97	267.50	911.6	1179.1	0.017429	6.66
	60.3	75.0	307.60	277.43	904.5	1181.9	0.017524	5.82

HEAT REQUIRED AT DIFFERENT PRESSURES

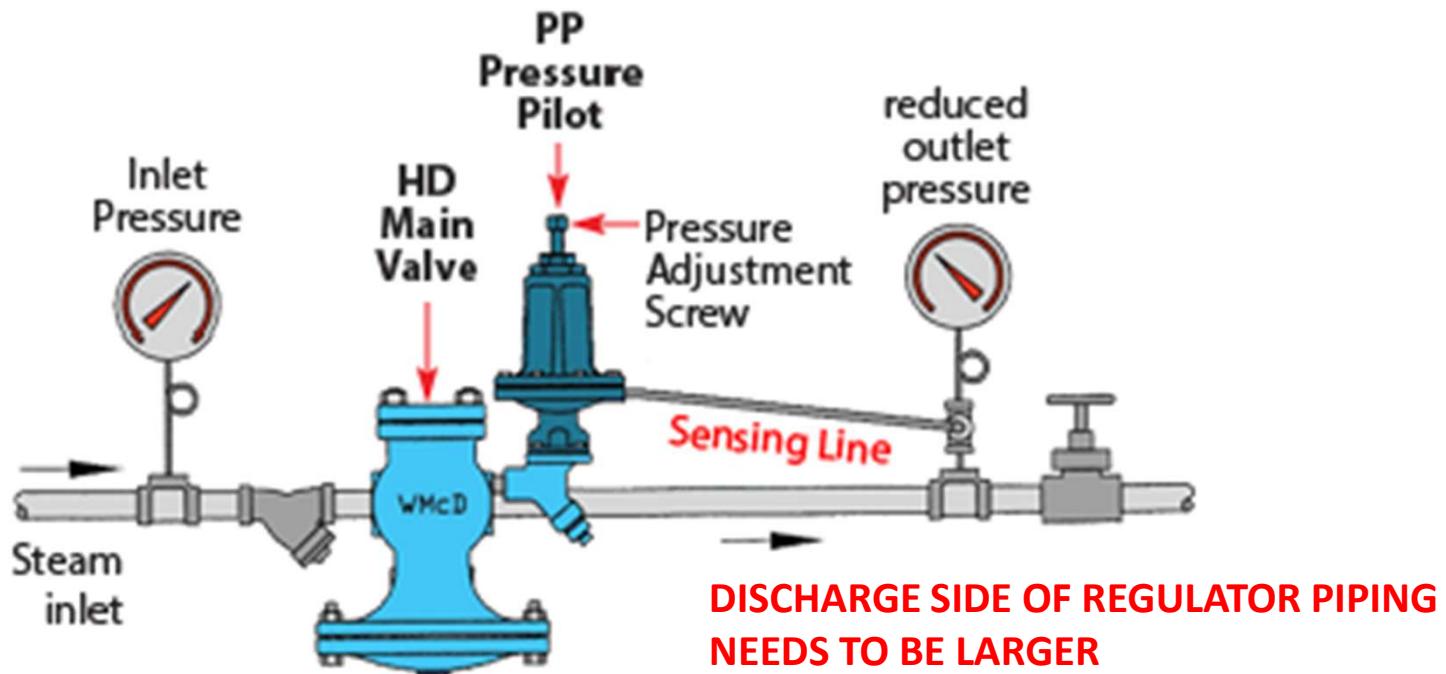
psig	°F	Latent Heat	Total Heat	Specific Volume (cu ft/lb)
0	212	970	1150	26.80
50	298	912	1179	6.655
100	338	880	1189	3.882

The TRAP ARENA - (equipment)

HD Main Valve

Pilot
Connection
Pilot
Adapter

Most Common HD Pilots


PP & PP5
PRESSURE
Spring-Loaded

PT
TEMPERATURE
Liquid-Filled

PA
PRESSURE
Air-Loaded

PS
On/Off
(Solenoid)

**“LOWER PRESSURES NEED MORE
VOLUME OF SPACE TO MAINTAIN SAME
LB/HOUR OF FLOW”**

Relief Valves

- Silent Energy Waste

Pressure Gauges!!!

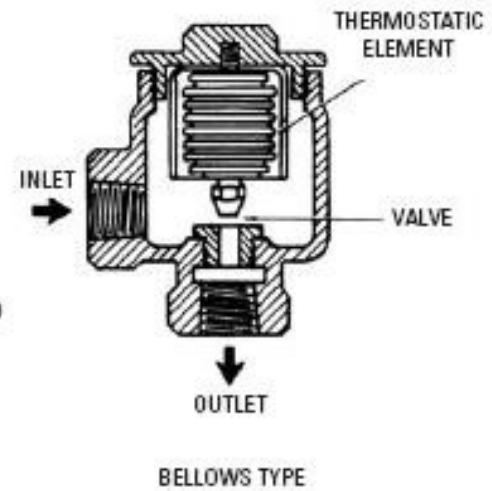
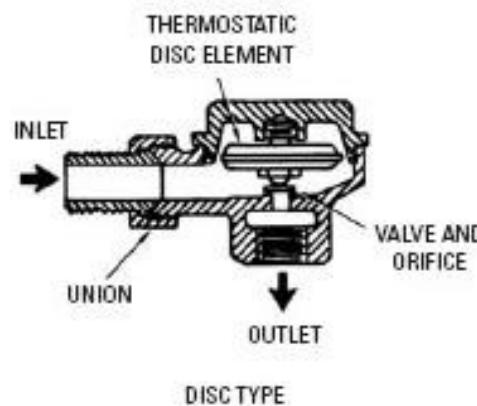
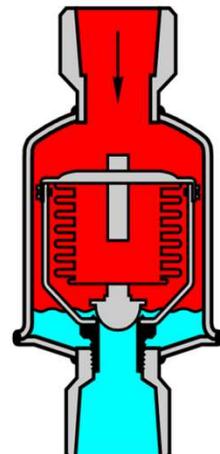
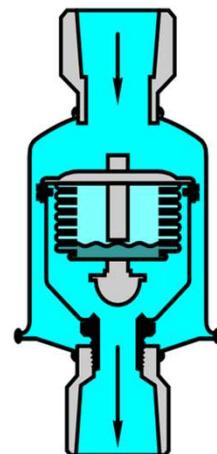
- Must need for setting & ensuring pressures are maintained

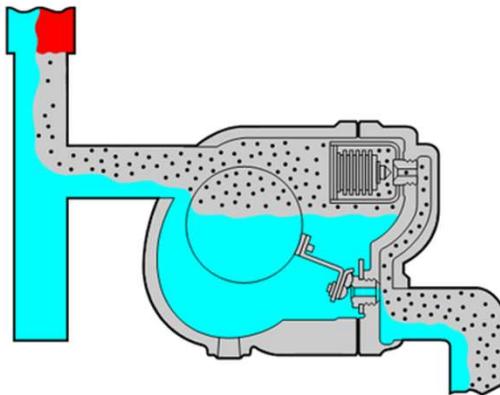
Steam Traps

- Must keep steam in the system.
- Must get the condensate out.
- Must get the air and CO₂ out.
- Must function automatically.

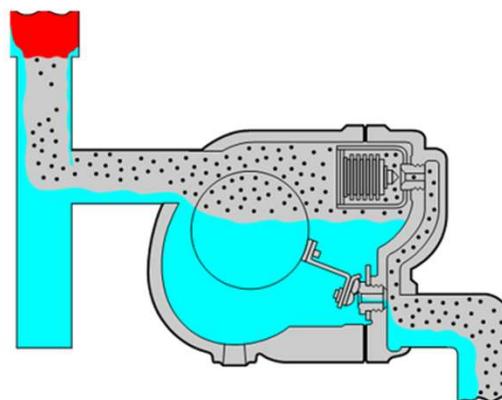
Operation of the Thermostatic Steam Trap

FUNCTION: BELLOWS EXPAND IN THE PRESENCE OF STEAM. BELLOWS RETRACT IN THE PRESENCE OF CONDENSATE (COOLING) ALLOWING FLOW.

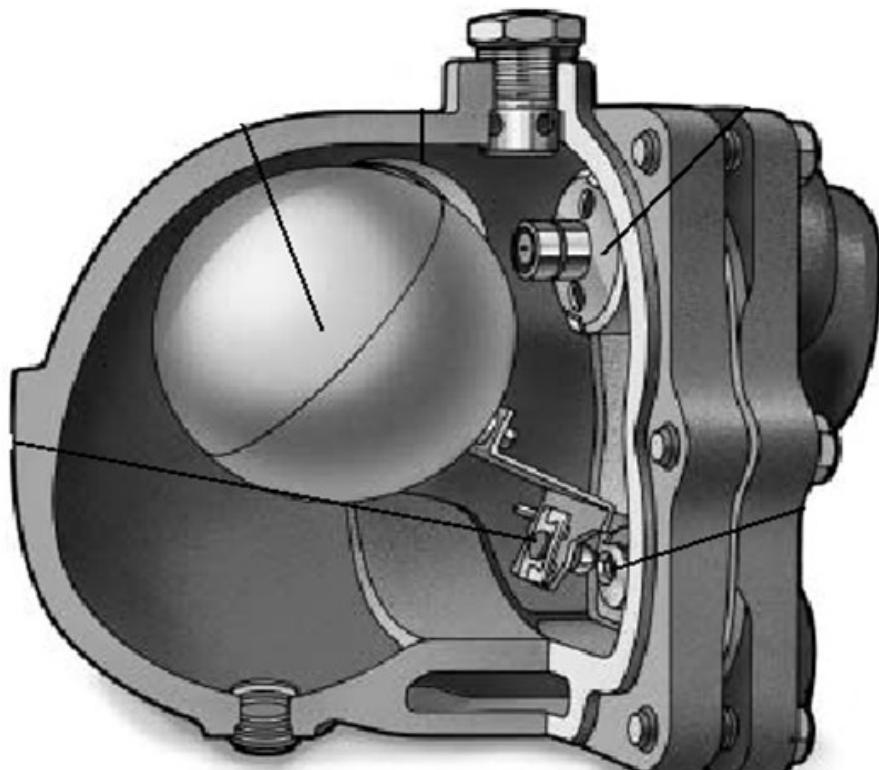






Figure 10-20 Thermostatic trap.

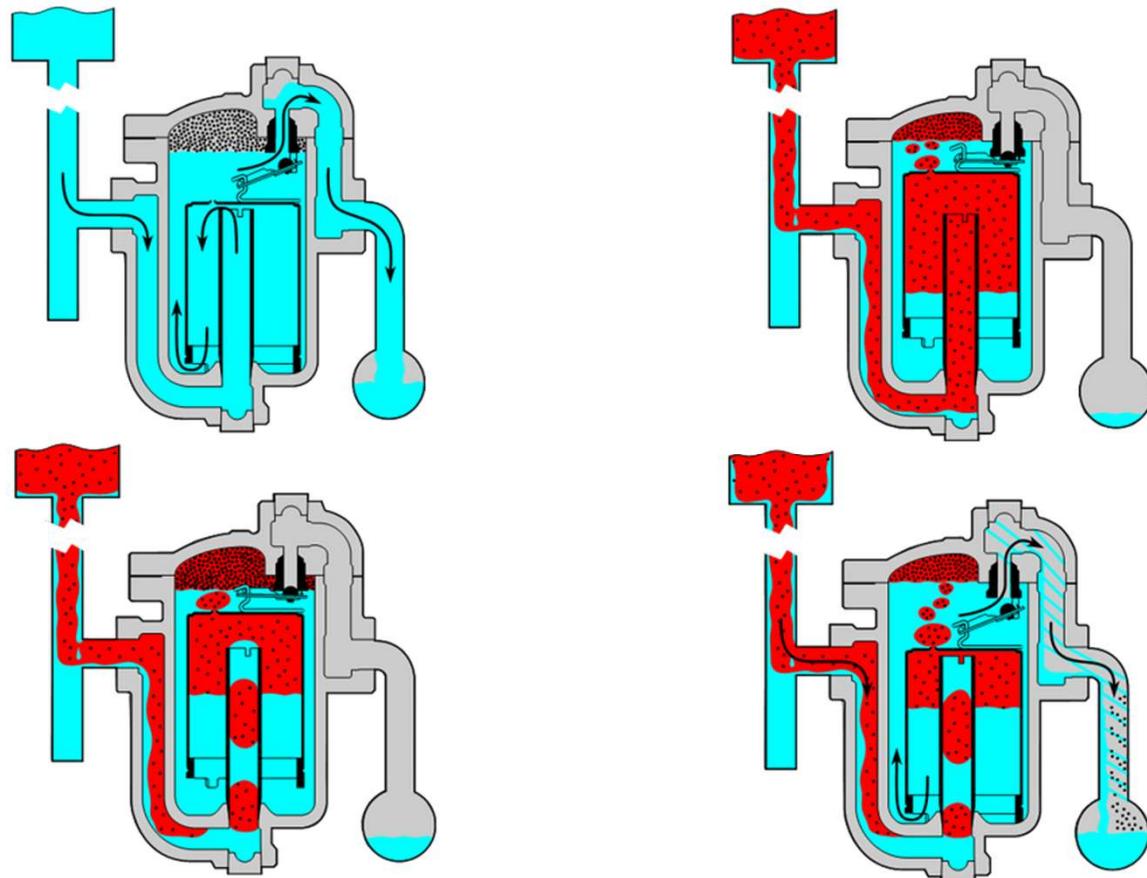
90I SERVICES


Operation of the F&T Trap

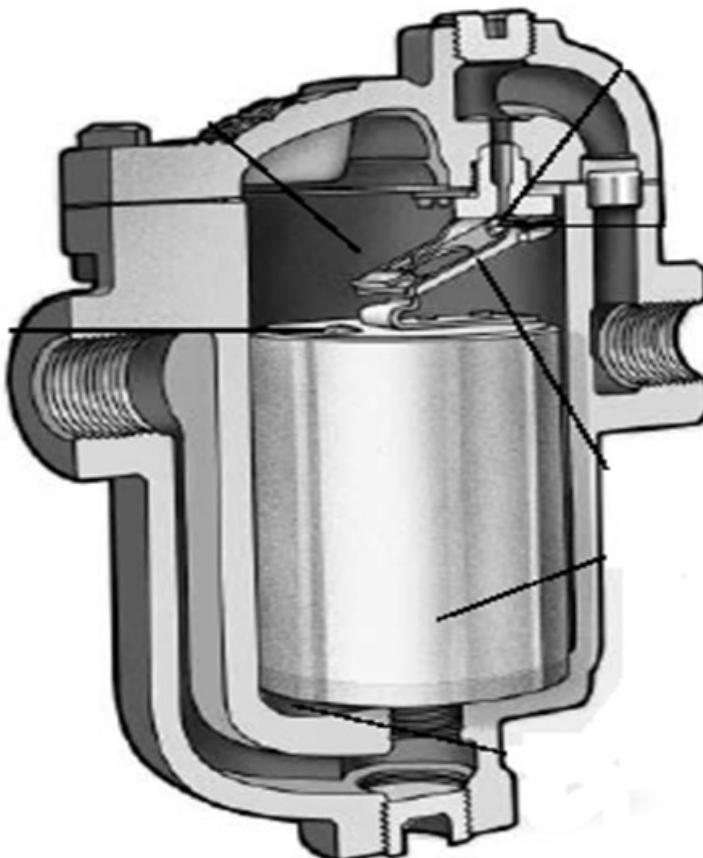
Operates on two methods


- Float style system
- Thermostatic element (air vent)

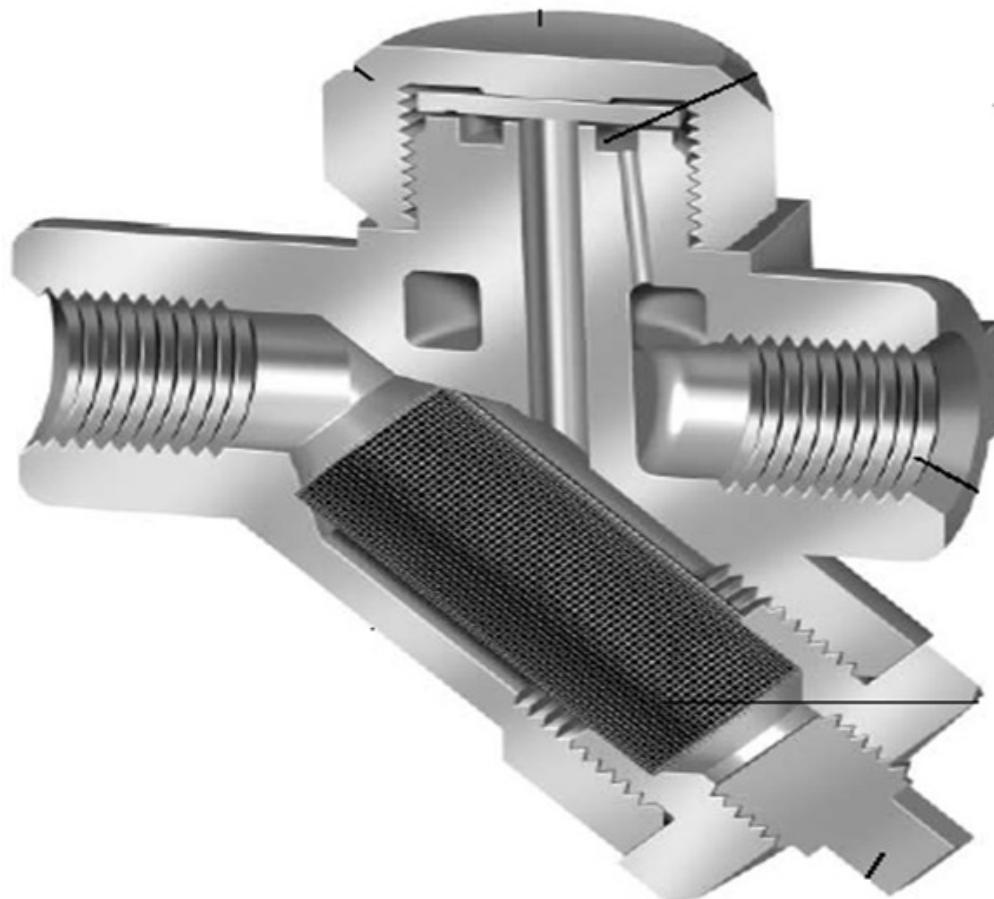
90I SERVICES


Float and Thermostatic Trap

Operation of the Inverted Bucket Steam Trap



90I SERVICES


Inverted Bucket Trap

Thermodynamic Trap

57

How Various Steam Traps Meet Specific Operating Requirements

Characteristics	Inverted Bucket	F & T	Disc	Thermostatic
Method of Operation	Intermittent	Continuous	Intermittent	Intermittent
Energy Conservation (Time in Service)	Excellent	Good	Poor	Fair
Corrosion Resistance	Excellent	Good	Poor	Fair
Resistance to Hydraulic Shock	Excellent	Poor	Excellent	Poor
Vents air and CO ₂ at steam temperature	Yes	No	No	No
Operation against back pressure	Excellent	Excellent	Poor	Excellent
Resistance to damage against freezing	Good	Poor	Good	Good
Performance on very light loads	Excellent	Excellent	Poor	Excellent
Ability to handle dirt	Excellent	Poor	Poor	Fair
Mechanical failure (Open-Closed)	Open	Closed	Open	—

Inverted Bucket

	Bellows Balance Pressure	Thermodynamic Traps	F&T Traps	Inverted Bucket
Modulation	Poor	Fair	Good	Good
Backpressure	Good	Poor	Good	Good
Dirt	Fair	Poor	Poor	Good
Wear	Fair	Poor	Good	Good
Water Hammer	Poor	Good	Poor	Good
Freezing	Good	Good	Poor	Good

90I SERVICES

Steam Trap Leaks

Table 6. Steam leak rates

Diameter (in.)	Leak rate (lb _{in} /h) at steam temperature of 500°F					
	Steam pressure (psig)					
50	100	150	200	250	300	
23	41	59	77	96	119	
91	163	235	308	382	478	
206	366	529	693	860	1,075	
366	651	940	1,232	1,528	1,912	
822	1,465	2,115	2,773	3,438	4,302	
1,462	2,605	3,761	4,929	6,112	7,648	
2,285	4,071	5,876	7,702	9,551	11,949	
3,290	5,862	8,462	11,091	13,753	17,207	

901 SERVICES

Steam Traps Leaks

- Trap leaking with 1/4" orifice and 100 psig operating pressure
- $163 \text{ lb/hr} \times 8760 \text{ hrs/year} = 1,427,880 \text{ lbs of steam per year from (1) trap}$
- $1427 \text{ Mlb} \times \$12 \text{ per thousand} = \$17,134$

How to Test Steam Traps

- **Visual (Best)**
Test Valve Method
- **Listening (Next Best)**
Ultrasound Device
- **Temperature (Indicative Only)**
Pyrometer
- **Other Devices (Least Reliable)**

Visual (Best)

**Eyes On The Event - Start Asking Questions -
WHY?**

Listening (Next Best)

This Has Been Proven To Be Reliable Most Of The Time

- **This Method Relies HEAVILY On The Listeners Experience**

Ultrasound Solutions

Temperature (Indicative Only)

This Method Provides Partial Information Only

- Must Compile Other Information To Completely Diagnose Condition Of The Steam Trap**

Other Devices (Least Reliable)

Provides Minimal Information Only

- Adjacent Equipment & Plumbing Issues Not Considered
- Leaking Parts & Piping Not Discovered
- PRV & Sensing Lines Are Not Reviewed
- Relief Valves Leaking By Not Discovered

Steam Trap Assessments

WHY?

Survey Your Steam Traps

**Repair / Replace Defective
Steam Traps**

=

\$\$\$\$ Energy Savings

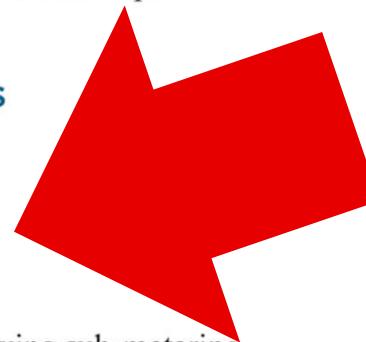
Environmental Savings

Steam Trap Testing Facts

Steam traps are tested to determine if they are functioning properly and not cold plugging or failing in an open position and allowing live steam to escape into the condensate return system. There are four basic ways to test steam traps: temperature, sound, visual, and electronic.

Recommended Steam Trap Testing Intervals

- High-Pressure (150 psig and above): Weekly to Monthly
- Medium-Pressure (30 to 150 psig): Monthly to Quarterly
- Low-Pressure (below 30 psig): Annually


For additional information on monitoring, download the following sub-metering case studies from the AMO publication library:

- Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data
- Nissan North America: How Sub-Metering Changed the Way a Plant Does Business

Also refer to the following guidebook on the EERE Federal Energy Management website at www.femp.energy.gov:

- Metering Best Practices: A Guide to Achieving Utility Resource Efficiency, Release 2.0

Adapted from an Energy TIPS fact sheet that was originally published by the Industrial Energy Extension Service of Georgia Tech.

Entire Steam Trap Population Is Assessed

Adjacent Plumbing Issues ARE Discovered

Leaking Parts / Pipes May Be Identified

PRV Issues (Sensing Lines) Are Reviewed

Relief Valve Issues May Be Discovered (Leaking By)

Safety Issues May Be Discovered During Assessment Reporting

How Is Energy Savings Calculated?

Input	Your Values	Notes
Fuel Cost (\$/MMBtu)	5	Enter your fuel cost
Boiler Efficiency (%)	80	Typical = 75-85%
Steam Pressure (psig)	150	Enter pressure, enthalpy auto-fills
Steam Enthalpy (Btu/lb)	1195	Auto-calculated from lookup table
Steam Quantity (lb)	1000	Base unit for calculation
Water & Treatment Cost (\$/1000 lb)	0.25	Makeup water + chemicals per 1000 lb steam
Fuel Steam Cost (\$/1000 lb)	7.46875	Formula: (Fuel Cost / Eff) × (Steam Btu / 1,000,000)
Total Steam Cost (\$/1000 lb)	7.71875	Fuel cost + water/treatment cost
Annual Steam Usage (MMlb)	100	Enter annual steam demand in million lb
Annual Steam Cost (\$)	771875	Total steam cost × MMlb × 1000

Steam Cost Example

FY25				FY26					
Rates									
internal				34.15	3.00%				
external				35.94	3.00%				
Volume									
internal				560,420					
external				98,865					
Revenue				659,285					
internal				19,139,750					
external				3,553,477					
Gross Revenue				22,693,226					
Less:									
Central reallocation				(177,674)					
Condensate Credit				(1,588,526)					
Adjustments				-					
Net Revenue				20,927,027					
Expense									
Salaries				2,141,033	3.00% merit				
Benefits				770,772	0.80% CFB 36.0% (proposed)				
Other Expenses				1,410,163	4.00% inflation				
Electricity				184,305	0.28				
Water & Sewer				474,214	0.72				
Gas				4,956,642	7.52				
Utility Tax				102,819					
Net investment plant				100,000					
Transfers									
Debt Service				4,416,240	will finalize with new R8 report				
EM fee				157,827	gas and electricity				
Reserve				3,500,000					
Other Transfers				-					
Total Expenses and Transfers				18,214,015					
Net Income				2,713,011	14.90%				
					15.15%				

901 SERVICES

Trap Type Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
UK Unknown	3	0.7%	3	100%
FL Float	18	4.4%	2	14.3%
FT Float & Thermostatic	81	19.6%	9	12.7%
IB Inverted Bucket	293	70.9%	25	9.2%
TH Thermostatic	10	2.4%	0	0%
DC Disc	8	1.9%	0	0%
Total	413	100%	39	10.4%

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	4,274
Loss (lb) CO2 Emissions (lb)	3,066,951
Repair Cost (USD) Payback	500,003 0
Period (months) Average Time	0 N/A 7
To Resolve (Days) Plugged Trap	
Count Monetary Summary	
Plugged Cost (USD)	N/A
CO2 Cost (USD) Steam	N/A
Loss Cost (USD) Total	61,339
Savings (USD)	61,339

Manufacturer Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
NOT NO TRAP	3	0.7%	3	100%
ARM Armstrong	341	82.6%	32	10.2%
AYV Ayvaz	28	6.8%	2	9.1%
W-M Watson McDaniel	27	6.5%	2	8.7%
SPE Spence	4	1%	0	0%
SPI Spirax Sarco	10	2.4%	0	0%
Total	413	100%	39	10.4%

Condition Summary

Description	Population Count	% of Total
OK Good	334	80.9%
OS Out of Service	37	9%
BT Blow Thru	16	3.9%
CD Cold	9	2.2%
PL Plugged	7	1.7%
LK Leaking	4	1%
FL Flooded	2	0.5%
RC Rapid Cycling	1	0.2%
NT Not Tested	1	0.2%
NF Not Found	1	0.2%
TR Trap Removed	1	0.2%
Total	413	100%

Application Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
CL Coil	72	17.4%	10	14.5%
DR Drip	306	74.1%	27	9.7%
PR Process	33	8%	2	7.7%
LD Liquid Drainer	2	0.5%	0	0%
Total	413	100%	39	10.4%

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	4,274
Loss (lb) CO2 Emissions (lb)	3,066,951
Repair Cost (USD) Payback	500,003
Period (months) Average Time	0
To Resolve (Days) Plugged Trap	0
Count Monetary Summary	N/A
	7
Plugged Cost (USD)	N/A
CO2 Cost (USD)	N/A
Steam Loss Cost (USD)	61,339
Total Savings (USD)	61,339

Condition Summary

Description	Population Count	% of Total
OK Good	334	80.9%
OS Out of Service	37	9%
BT Blow Thru	16	3.9%
CD Cold	9	2.2%
PL Plugged	7	1.7%
LK Leaking	4	1%
FL Flooded	2	0.5%
RC Rapid Cycling	1	0.2%
NT Not Tested	1	0.2%
NF Not Found	1	0.2%
TR Trap Removed	1	0.2%
Total	413	100%

901 SERVICES

Danny Thomas

Trap Type Summary

Description		Population Count	% of Total	Failure Count	In Service Failure
IB	Inverted Bucket	12	50%	2	16.7%
FT	Float & Thermostatic	6	25%	0	0%
DC Disc		6	25%	0	0%
Total		24	100%	2	8.3%

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	0 0
Loss (lb) CO2 Emissions (lb)	0 0
Repair Cost (USD) Payback	0
Period (months) Average Time	N/A
To Resolve (Days) Plugged Trap	1
Count Monetary Summary	

Manufacturer Summary

Description		Population Count	% of Total	Failure Count	In Service Failure
W-M	Watson McDaniel	4	16.7%	1	25%
ARM	Armstrong	14	58.3%	1	7.1%
SPI	Spirax Sarco	6	25%	0	0%
Total		24	100%	2	8.3%

Application Summary

Description		Population Count	% of Total	Failure Count	In Service Failure
DR	Drip	17	70.8%	2	11.8%
PR	Process	6	25%	0	0%
LD	Liquid Drainer	1	4.2%	0	0%
Total		24	100%	2	8.3%

Condition Summary

Description	Population Count	% of Total
OK Good	21	87.5%
CD Cold	1	4.2%
NF Not Found	1	4.2%
PL Plugged	1	4.2%
Total	24	100%

901 SERVICES

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	0
Loss (lb) CO2 Emissions (lb)	0
Repair Cost (USD) Payback	0
Period (months) Average Time	0
To Resolve (Days) Plugged Trap	0
Count Monetary Summary	N/A
	1
Plugged Cost (USD)	N/A
CO2 Cost (USD)	N/A
Steam Loss Cost (USD)	0
Total Savings (USD)	0

Condition Summary

Description	Population Count	% of Total
OK Good	21	87.5%
CD Cold	1	4.2%
NF Not Found	1	4.2%
PL Plugged	1	4.2%
Total	24	100%

901 SERVICES

Trap Type Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
UK Unknown	3	0.8%	3	100%
FL Float	18	4.6%	2	14.3%
FT Float & Thermostatic	75	19.3%	9	13.8%
IB Inverted Bucket	281	72.2%	23	8.9%
TH Thermostatic	10	2.6%	0	0%
DC Disc	2	0.5%	0	0%
Total	389	100%	37	10.5%

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	4,274
Loss (lb) CO2 Emissions (lb)	3,066,951
Repair Cost (USD) Payback	500,003 0
Period (months) Average Time	0 N/A 6
To Resolve (Days) Plugged Trap	
Count Monetary Summary	
Plugged Cost (USD)	N/A
CO2 Cost (USD) Steam	N/A
Loss Cost (USD) Total	61,339
Savings (USD)	61,339

Manufacturer Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
NOT NO TRAP	3	0.8%	3	100%
ARM Armstrong	327	84.1%	31	10.4%
AYV Ayvaz	28	7.2%	2	9.1%
W-M Watson McDaniel	23	5.9%	1	5.3%
SPE Spence	4	1%	0	0%
SPI Spirax Sarco	4	1%	0	0%
Total	389	100%	37	10.5%

Condition Summary

Description	Population Count	% of Total
OK Good	313	80.5%
OS Out of Service	37	9.5%
BT Blow Thru	16	4.1%
CD Cold	8	2.1%
PL Plugged	6	1.5%
LK Leaking	4	1%
FL Flooded	2	0.5%
RC Rapid Cycling	1	0.3%
NT Not Tested	1	0.3%
TR Trap Removed	1	0.3%
Total	389	100%

Application Summary

Description	Population Count	% of Total	Failure Count	In Service Failure
CL Coil	72	18.5%	10	14.5%
PR Process	27	6.9%	2	10%
DR Drip	289	74.3%	25	9.6%
LD Liquid Drainer	1	0.3%	0	0%
Total	389	100%	37	10.5%

Total Annualized Summaries

Fuel Used (MMBTU/yr) Steam	4,274
Loss (lb) CO2 Emissions (lb)	3,066,951
Repair Cost (USD) Payback	500,003
Period (months) Average Time	0
To Resolve (Days) Plugged Trap	0
Count Monetary Summary	N/A
	6
Plugged Cost (USD)	N/A
CO2 Cost (USD)	N/A
Steam Loss Cost (USD)	61,339
Total Savings (USD)	61,339

Condition Summary

Description	Population Count	% of Total
OK Good	313	80.5%
OS Out of Service	37	9.5%
BT Blow Thru	16	4.1%
CD Cold	8	2.1%
PL Plugged	6	1.5%
LK Leaking	4	1%
FL Flooded	2	0.5%
RC Rapid Cycling	1	0.3%
NT Not Tested	1	0.3%
TR Trap Removed	1	0.3%
Total	389	100%

Work Order Trap Detail

Pinkel

Tag Number Nests Groups Elevation (ft) Physical
 Location 6U.746J IRC Traps 5 6U. AHU
 3W; Humidifier; Off Jacket

Steam Trap Characteristics

Type Manufacturer Model	Float & Thermostatic
Connection Size Maximum	Armstrong 15B3
Operating Pressure (psig)	3/4" 15 NPT
Connection	Threaded
Condition	Blow Thru
Piping Direction	Stacked
Steam Pressure In (psig)	15
Steam Pressure Out (psig)	0
Condensate Recovery Application	Closed
Insulation Type	Drip
Installed Date	2018-Jun-6
Time in service (months per year)	12 No No
Superheat	
Shutdown Required	

Trap Valve Data

Valve Description	Type	Connection Size	Connection	Condition	Position
1 - Upstream valve 2 - Downstream Valve 3 - Depressurizing valve 4 - Downstream blowdown valve 5 - By-pass valve 6 - Upstream blowdown valve 7 - Upstream trap station isolation valve 8 - Downstream trap station isolation valve 9 - Strainer 10 - Strainer Blowdown Valve 11 - Check valve					

Follow Up

Technician name Jerry Hardin 2022-
 Date checked Jan-17 2022 [Jan.17]
 Comments Test BT

Recommendations replace trap and strainer

Created by Jerry Hardin
 21

2025-Jun-11

901 SERVICES

Work Order Trap Detail

Pinkel

Tag Number

Nests

6U.746J

Groups

IRC

Elevation (ft)

IRC Traps

Physical Location

5

6U. AHU 3W; Humidifier; Off Jacket

Steam Trap Characteristics

Type	Float & Thermostatic
Manufacturer	Armstrong
Model	1583
Connection Size	3/4"
Maximum Operating Pressure (psig)	15
Connection	NPT Threaded
Condition	Blow Thru
Piping Direction	Stacked
Steam Pressure In (psig)	15
Steam Pressure Out (psig)	0

Steam Basics

Questions?

<http://901Servicesllc.com>